Acyloxy Nitroso Compounds Inhibit LIF Signaling in Endothelial Cells and Cardiac Myocytes: Evidence That STAT3 Signaling Is Redox-Sensitive
نویسندگان
چکیده
We previously showed that oxidative stress inhibits leukemia inhibitory factor (LIF) signaling by targeting JAK1, and the catalytic domains of JAK 1 and 2 have a cysteine-based redox switch. Thus, we postulated that the NO sibling and thiophylic compound, nitroxyl (HNO), would inhibit LIF-induced JAK-STAT3 activation. Pretreatment of human microvascular endothelial cells (HMEC-1) or neonatal rat cardiomyocytes with the HNO donors Angeli's salt or nitrosocyclohexyl acetate (NCA) inhibited LIF-induced STAT3 activation. NCA pretreatment also blocked the induction of downstream inflammatory genes (e.g. intercellular adhesion molecule 1, CCAAT/enhancer binding protein delta). The related 1-nitrosocyclohexyl pivalate (NCP; not a nitroxyl donor) was equally effective in inhibiting STAT3 activation, suggesting that these compounds act as thiolate targeting electrophiles. The JAK1 redox switch is likely not a target of acyloxy nitroso compounds, as NCA had no effect on JAK1 catalytic activity and only modestly affected JAK1-induced phosphorylation of the LIF receptor. However, pretreatment of recombinant human STAT3 with NCA or NCP reduced labeling of free sulfhydryl residues. We show that NCP in the presence of diamide enhanced STAT3 glutathionylation and dimerization in adult mouse cardiac myocytes and altered STAT3 under non-reducing conditions. Finally, we show that monomeric STAT3 levels are decreased in the Gαq model of heart failure in a redox-sensitive manner. Altogether, our evidence indicates that STAT3 has redox-sensitive cysteines that regulate its activation and are targeted by HNO donors and acyloxy nitroso compounds. These findings raise the possibility of new therapeutic strategies to target STAT3 signaling via a redox-dependent manner, particularly in the context of cardiac and non-cardiac diseases with prominent pro-inflammatory signaling.
منابع مشابه
Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes.
Activation of glycoprotein (gp) 130 transduces hypertrophic and cytoprotective signals in cardiac myocytes. In the present study, we have demonstrated that signals through gp130 increase the expression of vascular endothelial growth factor (VEGF) in cardiac myocytes via the signal transducer and activator of transcription (STAT) 3 pathway. After activation of gp130 with leukemia inhibitory fact...
متن کاملSTAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction.
Pluripotent embryonic stem (ES) cell therapy may be an attractive source for postinfarction myocardial repair and regeneration. However, the specific stimuli and signal pathways that may control ES cell-mediated cardiomyogenesis remains to be completely defined. The aim of the present study was to investigate (1) the effect and underlying signal transduction pathways of leukemia inhibitory fact...
متن کاملLIF and the heart: just another brick in the wall?
Multiple studies have shown that the cytokine leukemia inhibitory factor (LIF) is protective of the myocardium in the acute stress of ischemia-reperfusion. All three major intracellular signaling pathways that are activated by LIF in cardiac myocytes have been linked to actions that protect against oxidative stress and cell death, either at the level of the mitochondrion or via nuclear transcri...
متن کاملActivation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes.
BACKGROUND gp130, a signal transducer of the IL-6-related cytokines, is expressed ubiquitously, including in the heart. The activation of gp130 in cardiac myocytes was reported to induce myocardial hypertrophy. The downstream side of gp130 consists of two distinct pathways in cardiac myocytes, one a Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, the other a mi...
متن کاملLIF transduces contradictory signals on capillary outgrowth through induction of stat3 and (P41/43)MAP kinase.
The signaling pathways regulating blood vessel growth and development are not well understood. In the present report, an in vitro model was used to identify signaling pathways regulating capillary formation in embryonic endothelial cells. Basic fibroblast growth factor (bFGF) plus leukemia inhibitory factor (LIF) optimally stimulate the formation of capillary-like structures of the embryonic en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012